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Abstract. Using the canonical method developed for anomalous theories, we present the independent
rederivation of the quantum relationship between the massive Thirring and the sine-Gordon models.
The same method offers the possibility to obtain the Mandelstam soliton operators as a solution of the
Poisson brackets “equation” for the fermionic fields. We checked the anticommutation and basic Poisson
brackets relations for these composite operators. The transition from the Hamiltonian to the corresponding
Lagrangian variables produces the known Mandelstam’s result.

1 Introduction

The connection between the massive Thirring model of
interacting fermions and the sine-Gordon model with non-
linear scalar field is well known [1–3]. This Bose–Fermi
equivalence has been obtained in [1] by performing the
computations of the Green’s functions for both theories.
After identification of some parameters, the Green’s func-
tions became equal to a perturbation series, so that under
these conditions these two theories are identical. An impor-
tant step towards obtaining this result has been achieved in
a pioneering paper [4]. In [2] Mandelstam has constructed
the Fermi fields as non-local functions of the sine-Gordon
scalars. He showed that the corresponding operators create
and annihilate the bare sine-Gordon solitons. These oper-
ators satisfy the proper commutation relations as well as
the Thirring model field equations, which confirms Cole-
man’s result. This equivalence has been established on the
quantum level and the relation between the Fermi and
Bose fields is non-local. Beside the approaches mentioned
above, Fermi–Bose equivalence was obtained in [5,6] using
the quantum mechanical interaction picture and the Krein
realization of the massless scalar field. The same problem
has been considered in [7].

In this paper we are going to derive the above con-
nection between massive Thirring and sine-Gordon mod-
els using the canonical method [8–10]. Starting with the
fermionic Thirring model we are going to construct the
equivalent bosonic theory, which appears to be the sine-
Gordon one. Our approach is different from the previously
mentioned ones and naturally works in the Hamiltonian
formalism. It gives a simpler proof of the same result.

We consider the formulation of the Thirring model with
auxiliary vector fields, which in virtue of the equations of
motion gives the standard form of the Thirring model ac-
tion. It is more convenient, regarding the fact that the
method which we use is based on the canonical formalism.

The form of the action with auxiliary fields becomes linear
in the fermionic current jµ. In Sect. 2.1 we are going to
canonicaly quantize the fermionic field. So it is useful to
keep all parts which contain this field and to omit the bilin-
ear part in auxiliary field. Such a Lagrangian is invariant
under local abelian gauge transformations. Consequently,
the first class constraints (FCC) j± are present in the the-
ory and satisfy the abelian algebra as a Poisson bracket
(PB) algebra. The quantum theory is anomalous, so that
the central term appears in the commutator algebra of
the operators ĵ±, and the constraints become second class
(SCC).

We define the effective bosonized theory as a classical
theory whose PB algebra of the constraints J± is isomor-
phic to the commutator algebra of the operators ĵ± in
the quantized fermionic theory. Also, the bosonic Hamil-
tonian depends on J± in the same way as the fermionic
Hamiltonian depends on j±. The bosonized theory incor-
porates anomalies of the quantum fermionic theory at the
classical level.

In Sect. 2.3 we find the effective Lagrangian for the given
algebra as its PB current algebra and given the Hamilto-
nian in terms of the currents. Similar problems have been
solved before in the literature [10] using canonical meth-
ods. We introduce the phase space coordinates ϕ, π and
parameterize the constraints J± by them. Then we find the
expressions for the constraints J± in terms of the phase
space coordinates, satisfying the given PB algebra, as well
as for the Hamiltonian density Hc. We then use the general
canonical method [8–10] for constructing the effective La-
grangian with the known representation of the constraints.
Eliminating the momentum variable on invoking its equa-
tion of motion we obtain the Bose theory which is equiv-
alent to the quantum Fermi theory. Finally, returning the
omitted term, bilinear in Aµ, and eliminating the auxiliary
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vector field on invoking its equation of motion we obtain
the sine-Gordon model.

By the way, we obtain Hamiltonian bosonization formu-
lae for the currents which depend on the momenta, while
those for scalar densities depend only on the coordinates.
Known Lagrangian bosonization rules can be obtained
from the Hamiltonian ones, after eliminating the momenta.

The massless Thirring model is considered separately
in Sect. 2.4. It is shown that in its quantum action there
exists one parameter which does not appear in the classical
one. Therefore, the quantum massless Thirring model is
non-uniquely defined in agreement with [12].

In Sect. 3. the same method will be applied for the con-
struction of the fermionic Mandelstam’s operators. The
algebra of the currents is the basic PB algebra. Commu-
tation relations between the currents and fermionic fields
completely define the fermionic fields. So, we first find the
PB between j± and ψ±. The corresponding commutation
relations of the operators ĵ± and ψ̂± are not anomalous. In
order to obtain the bosonized expression for the fermions
we “solved” the PB equation, which is isomorphic to the
previous operator relation. We find the representation for
the unknown fermionic field using the known representa-
tion for the currents J±. The solution depends on the phase
space coordinates ϕ and π and represents the Hamiltonian
form of Mandelstam’s creation and annihilation operators.

Section 4 is devoted to concluding remarks. The deriva-
tion of the central term, using the normal ordering pre-
scription, is presented in Appendix A, and the field product
regularization in Appendix B.

2 Thirring model

In this section the canonical method of bosonization will
be applied to the Thirring model.

2.1 Canonical analysis of the theory

The Thirring model [11] is a theory of the massive Dirac
field in two-dimensional space-time defined by the following
Lagrangian:

LTh = ψ̄(iγµ∂µ −m)ψ − g

2
jµj

µ , (2.1)

where g is coupling constant, and jµ ≡ ψ̄γµψ is the fermi-
onic current. In two-dimensional space-time the γ matrices
are defined in terms of the Pauli matrices σ1, σ2 and σ3
by γ0 = σ1, γ

1 = −iσ2, γ5 = −iσ1σ2 = σ3 and obey the
standard relations

γµγν + γνγµ = 2ηµν , γµγ5 + γ5γ
µ = 0 . (2.2)

The metric tensor ηµν is defined by η00 = −η11 = 1;
η01 = η10 = 0. The axial-vector product γµγ5 can be
expressed in terms of γν in the following way:

γµγ5 = −εµνγν , (2.3)

where εµν is the totally antisymmetric tensor ε01 = −ε10 =
1. The Weyl or chiral spinors are defined using the γ5 ma-
trix:

γ5ψ± = ∓ψ±, (2.4)

which can be expressed with the help of the chiral projec-
tors P± ≡ 1∓γ5

2 as

P±ψ± = ±ψ±. (2.5)

The definition of the projectors P± implies that the Dirac
spinor ψ expressed in terms of the Weyl spinors ψ± has
the form

ψ =
(
ψ−
ψ+

)
. (2.6)

The Lagrangian given by (2.1) is on-shell equivalent to the
following one:

L = ψ̄(iγµ∂µ −m)ψ +
1
2
jµAµ +

1
8g
AµAµ . (2.7)

Namely, the equations of motion for the auxiliary field Aµ
which are obtained from the Lagrangian (2.7) have the form

1
2
jµ +

1
4g
Aµ = 0, (2.8)

which, after substitution in (2.7), gives the Lagrangian (2.1).
We are going to quantize the fermionic field, so we will

consider the Lagrangian

L0 = ψ̄(iγµ∂µ −m)ψ +
1
2
jµAµ , (2.9)

keeping the terms with fermionic fields. The canonical
method of bosonization will be applied to this Lagrangian.
In terms of the Weyl spinors ψ± and the light-cone com-
ponents of the auxiliary field Aµ it reads

L0 = iψ∗
−ψ̇− + iψ∗

+ψ̇+ + iψ∗
−ψ

′
− − iψ∗

+ψ
′
+

−m(ψ∗
−ψ+ + ψ∗

+ψ−) +
1
2
(j+A− + j−A+) , (2.10)

where the chiral currents j± are defined by j± ≡ √
2ψ∗

±ψ±,
and the fields A± ≡ (1/

√
2)(A0 ±A1). The time and space

coordinates are respectively τ ≡ x0 and σ ≡ x1, and the
corresponding derivatives are ψ̇ ≡ ∂ψ

∂τ and ψ′ ≡ ∂ψ
∂σ . Now

we will investigate the Hamiltonian structure of the the-
ory defined by the Lagrangian (2.10). This Lagrangian is
already in Hamiltonian form. It is linear in the time deriva-
tives of the basic Lagrangian variables ψ+ and ψ−, whose
conjugate momenta are π± = iψ∗

±. Variables without time
derivatives, A+ and A−, are Lagrange multipliers and the
primary constraints corresponding to them are the FCC:

j± ≡
√

2ψ∗
±ψ± = −i

√
2π±ψ± . (2.11)

From (2.10) we can conclude that the canonical Hamil-
tonian density of the Thirring model takes the form
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Hc = −i(ψ∗
−ψ

′
− − ψ∗

+ψ
′
+) +m(ψ∗

−ψ+ + ψ∗
+ψ−)

= t+ − t− +m(ρ+ + ρ−) , (2.12)

where we introduced the energy-momentum tensor t± and
the chiral densities ρ± by the relations

t± ≡ iψ∗
±ψ

′
± = π±ψ′

± , ρ± ≡ ψ∗
±ψ∓ = −iπ±ψ∓ . (2.13)

The total Hamiltonian is defined by

HT =
∫

dσHT, (2.14)

where the total Hamiltonian density, HT, is

HT = t+ − t− +m(ρ+ + ρ−) − 1
2
(j+A− + j−A+) . (2.15)

Starting with the basic PB

{ψ±(σ), π±(σ̄)} = δ(σ − σ̄) , (2.16)

it is easy to show that the currents j± satisfy the two
independent abelian PB algebras

{j±(σ), j±(σ̄)} = 0 , {j+(σ), j−(σ̄)} = 0 . (2.17)

Using (2.16), we can find the PB of the currents j± with
the quantities t± and ρ±:

{j±(σ), t±(σ̄)} = −j±(σ)δ′(σ − σ̄)

{j±(σ), t∓(σ̄)} = 0 , (2.18)

{j±(σ), ρ±(σ̄)} = −i
√

2ρ±δ(σ − σ̄),

{j±(σ), ρ∓(σ̄)} = i
√

2ρ∓δ(σ − σ̄) . (2.19)

The last relations imply

{Hc(σ), j±(σ̄)} = ±j±(σ)δ′(σ − σ̄) ∓ im
√

2(ρ+ − ρ−) ,
(2.20)

which help us to obtain

j̇+ = {j+, HT} = j′
+ + im

√
2(ρ+ − ρ−) , (2.21)

j̇− = {j−, HT} = −j′
− − im

√
2(ρ+ − ρ−) . (2.22)

Taking the sum of (2.21) and (2.22), we get

∂−j+ + ∂+j− = ∂µj
µ = 0 , (2.23)

which implies that the current jµ is conserved.
Since the constraints j± are first class ones, the clas-

sical theory, defined by the Lagrangian (2.9), has a local
abelian symmetry, whose generators j± satisfy the abelian
PB algebra given by (2.17).

2.2 Quantization of the fermionic theory

The passage from the classical to the quantum theory can
be obtained by introducing the operators ψ̂ and π̂, instead
of the corresponding classical fields. The Poisson brackets

are replaced by the corresponding commutators, and the
operator product is defined using the normal ordering pre-
scription, whose details are explained in Appendix A. We
have

ĵ± ≡ −i
√

2 : π̂±ψ̂± :, t̂± ≡ : π̂±ψ̂′
± :, ρ̂ ≡ −i : π̂±ψ̂∓ : .

(2.24)
The algebra of the operators ĵ±, t̂± and ρ̂± takes the form
(Appendix A)[

ĵ±(σ), ĵ±(σ̄)
]

= ±2i�κ δ′(σ − σ̄),[
ĵ+(σ), ĵ−(σ̄)

]
= 0 , (2.25)[

ĵ±(σ), t̂±(σ̄)
]

= −i�ĵ±(σ̄)δ′(σ − σ̄),[
ĵ±(σ), t̂∓(σ̄)

]
= 0 , (2.26)[

ĵ±(σ), ρ̂±(σ̄)
]

= �
√

2ρ̂±δ(σ − σ̄),[
ĵ±(σ), ρ̂∓(σ̄)

]
= −�

√
2ρ̂∓δ(σ − σ̄) , (2.27)

where κ ≡ �

2π .
The current operators with different chirality commute,

as well as the corresponding variables in the classical the-
ory. The difference between the classical and the quantum
algebra is the appearance of the central term in the commu-
tator current algebra (2.25). As a consequence, the opera-
tors ĵ± are second class constraints operators. This leads to
the existence of the anomaly. Namely, the symmetry of the
classical theory, whose generators are first class constraints
j±, is no longer a symmetry at the quantum level.

2.3 Effective bosonic theory

Now we will introduce new variables J±, Θ±, R± and pos-
tulate their PB algebra to be isomorphic to the com-
mutator algebra in the quantum fermionic theory, given
by (2.25), (2.26) and (2.27):

{J±(σ), J±(σ̄)} = ±2κδ′(σ − σ̄),

{J+(σ), J−(σ̄)} = 0 , (2.28)

{Θ±(σ), J±(σ̄)} = J±(σ) δ′(σ − σ̄),

{Θ±(σ), J∓(σ̄)} = 0 , (2.29)

{J±(σ), R±(σ̄)} = −i
√

2R±(σ)δ(σ − σ̄),

{J±(σ), R∓(σ̄)} = i
√

2R∓(σ)δ(σ − σ̄) . (2.30)

Let us find the expressions for the currents J±, the energy-
momentum tensor Θ± and the chiral densities R± in terms
of the scalar field ϕ and its conjugate momenta π, with
the PB

{ϕ(σ), π(σ̄)} = δ(σ − σ̄). (2.31)

Assuming that the currents J± are linear in the momentum
π, it is easy to show that the expression

J± = ±π + κϕ′ (2.32)
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is a solution of (2.28). Supposing that the energy-momen-
tum tensor Θ± is quadratic in the currents J±, we can
immediately obtain its bosonic representation from the
algebra (2.29):

Θ± = ± 1
4κ
J±J± . (2.33)

The bosonic representation for scalar densities,R±, can
be obtained from the algebra (2.30). Assuming that the
scalar densities are momentum independent, we have

R± = M exp (±i
√

2ϕ) , (2.34)

where M is constant. The scalar densities as well as the
parameter M have the dimension of mass.

The total Hamiltonian density of the effective bosonic
theory is defined by the analogy with the total Hamiltonian
density of the fermionic theory, given by (2.15):

HT = Θ+−Θ−+m(R++R−)−1
2
(J+A−+J−A+) , (2.35)

and the Lagrangian of the effective bosonic theory has the
form

LTh
0 = πϕ̇− HT . (2.36)

Substituting (2.35) in (2.36), and using (2.32), (2.33), and
(2.34), we obtain

LTh
0 = πϕ̇− 1

2κ
π2 − 1

2
κϕ′2 − 2mM cos

√
2ϕ

+
1√
2
(−πA1 + κϕ′A0) . (2.37)

On invoking the equation of motion for the momentum π

π = κ

(
ϕ̇− A1√

2

)
, (2.38)

this Lagrangian takes the form

LTh
0 =

1
2
κ ∂µϕ∂

µϕ+
κ√
2
εµνAµ∂νϕ− 2mM cos (

√
2ϕ)

+
1
4
κA2

1 . (2.39)

It is possible to add to the effective Lagrangian some local
functional, depending on the fields A+ and A−. In order to
obtain the Lorentz invariant action of the effective bosonic
theory, we will choose an additional term in the form

∆LTh
0 = −1

4
κA2

1. (2.40)

Adding the counterterm ∆LTh
0 to the Lagrangian (2.39),

and returning the term bilinear in Aµ we get

LTh
eff =

1
2
κ ∂µϕ∂

µϕ+
κ√
2
εµνAµ∂νϕ− 2mM cos (

√
2ϕ)

+
1
8g
AµAµ . (2.41)

Now we can eliminate the auxiliary field Aµ from the La-
grangian (2.41), using its equation of motion

Aµ = −4gκ√
2
εµν∂νϕ . (2.42)

Substituting this equation back into the Lagrangian (2.41),
we get

LTh
eff =

1
2
κ(1 + 2gκ) ∂µϕ∂µϕ− 2mM cos (

√
2ϕ) . (2.43)

This Lagrangian, after rescaling the scalar field ϕ, ϕ →√
2
β ϕ, takes the form

LTh
eff =

1
2
∂µϕ∂

µϕ− 2mM cos (β ϕ) , (2.44)

where β is defined by

β ≡
[
1
2
κ(1 + 2gκ)

]−1/2

. (2.45)

As usual, we will add a constant term to the Lagrangian
(2.44), in order to have vanishing energy for the vacuum
configuration ϕ = 0 and obtain

LTh
eff =

1
2
∂µϕ∂

µϕ− 2mM [cos (β ϕ) − 1] . (2.46)

This is the Lagrangian of the sine-Gordon theory.
Therefore, the Thirring model is equivalent to the sine-
Gordon theory, if there exists the following relation be-
tween the parameters:

4π
β2 �

= 1 +
g�

π
= 1 + 2gκ , (2.47)

which is consequence of (2.45). The result given by (2.47),
obtained by the canonical method, is in agreement with
the one in [1]. Coleman has obtained this result by direct
computation of Green’s functions in both the Thirring and
the sine-Gordon model using a perturbative technique. The
relation (2.47) is the main result in this chapter. From its
form, we can easy conclude that the free Thirring model
(g = 0) is equivalent to the sine-Gordon theory with

β2 =
4π
�
. (2.48)

It is worth to emphasize that the relation (2.47) im-
plies duality between the Thirring and sine-Gordon model.
Namely, from this relation it follows that the large values
of the Thirring coupling constant g corresponds to a small
value of the sine-Gordon parameter β.

2.4 One parameter class solutions
of the massless Thirring model

We shall consider separately the massless Thirring model.
This case is specially interesting, because the corresponding
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quantum theory is non-uniquely defined. Namely, in the
quantum action of the theory there exists one parameter,
which does not appear in the classical one [12]. Since the
Thirring sine-Gordon relationship was already established,
we will show the existence of this parameter starting with
the corresponding sine-Gordon model.

Firstly, we split the vector field from the Lagrangian
(2.39) to the quantum and external part Aµ = aµ + Aex

µ .
Here the field aµ plays the role of our auxiliary field and
Aex
µ is Hagen’s external source. Then, omitting the mass

term and the local functional dependence on the vector
fields, we obtain from (2.39)

LTh(ϕ, a+Aex) =
1
2
κ ∂µϕ∂

µϕ+
κ√
2
εµν(aµ +Aex

µ )∂νϕ.

(2.49)
The invariance of the Thirring model under the replace-

ment

jµ → jµ5 , Aex
µ → Aex

5µ , g → −g , (2.50)

corresponds to the Lagrangian LTh(ϕ5, a5 + Aex
5 ). Note

that we introduce new auxiliary fields ϕ5 and a5, while
the external fields are related by the dual transformation
Aex

5µ = εµνA
exν .

The symmetry of the massless Thirring model given
by (2.50) allows us to introduce the one-parameter La-
grangian

L(ξ, η) = ξLTh(ϕ, a+Aex) + ηLTh(ϕ5, a5 +Aex
5 )

+
1
8g

(aµaµ − a5µa
µ
5 ) , (2.51)

with ξ+η = 1. The parameters ξ and η obey this constraint
because the Lagrangian given by (2.51) has to correspond
to the Lagrangian of the massless Thirring model. The
terms quadratic in auxiliary fields in fact replaced the last
term of (2.41). The second part was added with opposite
sign according to the symmetry replacement g → −g.

After elimination of all auxiliary fields a, a5 and then
ϕ,ϕ5, we obtain the effective action

W (Aex) = −�

8

∫
d2xAex

µ D
µν
g Aex

ν , (2.52)

where

Dµν
g =

(
εµρενσ

ξ

1 + gξ�
π

+ ηµρηνσ
η

1 − gη�

π

)
∂ρ∂σ

1
∂2 .

(2.53)
Up to the normalization factor this is just relation (3.13)
from Hagen’s paper [12].

The expression for the effective action is equivalent to
the solution of the functional integral [10],

〈0 | 0〉A,g =
∫

dψ̄dψeiLTh = eiW (Aex) , (2.54)

which corresponds to (3.12) in the first of [12]. Using these
expressions it is easy to reproduce the other Hagen results.

3 Bosonization of fermionic fields

In this section we will apply the canonical method of
bosonization to the fermionic fields. Starting with the PB
of the fermionic fields ψ± and the corresponding momenta
π± with currents j±, the fermionic fields will be expressed
in terms of the bosonic phase space coordinates ϕ and π.
After quantization, these classical fermionic fields become
the operators. In order to show that these operators are re-
ally fermionic ones, we investigate their anticommutation
relations. From the bosonic form of the operators Ψ±, we
easily obtain the bosonic representation of the scalar and
pseudoscalar density ˆ̄ΨΨ̂ and ˆ̄Ψγ5Ψ̂ , respectively. These
results are consistent with the ones obtained in [2].

3.1 Construction of the fermionic field operators

The Poisson brackets of the fermionic fields ψ± and their
conjugate momenta π± with the currents j± have the form

{j±(σ), ψ±(σ̄)} = i
√

2ψ±δ(σ − σ̄),

{j±(σ), ψ∓(σ̄)} = 0 , (3.1)

{j±(σ), π±(σ̄)} = −i
√

2π±δ(σ − σ̄),

{j±(σ), π∓(σ̄)} = 0 . (3.2)

Because the right hand side is linear in the fields, the
anomaly is absent and, after quantization, the algebra of
the operators ψ̂±, π̂± and ĵ± preserves the original form[

ĵ±(σ), ψ̂±(σ̄)
]

= −�
√

2ψ̂±δ(σ − σ̄),[
ĵ±(σ), ψ̂∓(σ̄)

]
= 0 , (3.3)[

ĵ±(σ), π̂±(σ̄)
]

= �
√

2π̂±δ(σ − σ̄),[
ĵ±(σ), π̂∓(σ̄)

]
= 0 . (3.4)

Now, we will construct the bosonic representation of the
fermionic fields Ψ± and their conjugate momenta Π±. We
demand that the Poisson brackets algebra of the fields
Ψ±, their conjugate momenta Π±, and currents J±, whose
bosonic form is already known, is isomorphic to the algebra
of the operators ψ̂±, π̂± and ĵ±, respectively. Therefore,
we have

{J±(σ), Ψ±(σ̄)} = i
√

2Ψ±(σ)δ(σ − σ̄),

{J±(σ), Ψ∓(σ̄)} = 0 , (3.5)

{J±(σ), Π±(σ̄)} = −i
√

2Π±(σ)δ(σ − σ̄),

{J±(σ), Π∓(σ̄)} = 0 . (3.6)

In order to solve these equations in terms of Ψ± and Π±,
let us introduce the variables I± as follows:

I±(σ) ≡
∫ σ

−∞
dσ1 J±(σ1) . (3.7)
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With the help of the bosonic representation of the cur-
rents (2.32), we obtain the I± dependence of the basic
bosonic variables

I±(σ) = ±
∫ σ

−∞
dσ1 π(σ1) + κϕ(σ) . (3.8)

Using the Poisson brackets current algebra, given by (2.28),
we find the PB of the variables I± with the currents J±,

{J±(σ), I±(σ̄)} = ∓2κ δ(σ − σ̄) , (3.9)

{J±, I∓} = 0 . (3.10)

Let us suppose that the fields Ψ± and their conjugate mo-
menta depend only on the variables I±. Under that as-
sumption, from the algebra given by (3.5) and (3.6), we
get the following equations:

{J±(σ), I±(σ̄)} ∂Ψ±
∂I±

= i
√

2Ψ±(σ)δ(σ − σ̄) , (3.11)

{J±(σ), I±(σ̄)} ∂Π±
∂I±

= −i
√

2Π±(σ)δ(σ − σ̄). (3.12)

With the help of (3.9), we obtain the bosonic representation
of the fermionic field Ψ± and their conjugate momentaΠ±,

Ψ± = C± exp
(

∓ i
κ
√

2
I±

)
, (3.13)

Π± = D± exp
(

± i
κ
√

2
I±

)
, (3.14)

where C± and D± are the constants which will be deter-
mined using a regularization procedure. These constants
are not independent. The relation D± = iC∗

± follows from
the classical fermionic theory constraints π± = iψ∗

± and
their bosonic analogue Π± = iΨ∗

±.
After quantization the classical fields Ψ± and their con-

jugate momentaΠ± become operators Ψ̂± and Π̂±. So, the
normal ordering prescription has to be applied to the op-
erators product in the right hand side in (3.13) and (3.14):

Ψ̂± = C± : exp
(

∓ i
κ
√

2
Î±

)
: , (3.15)

Π̂± = iC∗
± : exp

(
± i
κ
√

2
Î±

)
: . (3.16)

This means that after expansion of the exponent in the
right hand side, annihilation operators are placed right to
the creation ones (Appendix A).

As direct computation shows (Appendix B), products of
the operators Ψ̂∗

±Ψ̂± at the same point of space are singular.
In order to regularize these products, let us introduce the
operators ˆ̃J±, which are the products of field operators at
the different points of space,

ˆ̃J±(σ1, σ2) ≡
√

2Ψ̂∗
±(σ1)Ψ̂±(σ2) . (3.17)

After some calculations (Appendix B), we obtain

ˆ̃J±(σ, σ + η)| η→0 ≡
√

2Ψ̂∗
±(σ)Ψ̂±(σ + η)| η→0

=
F±
η ± iε

+ Z±Ĵ±(σ) (ε > 0) , (3.18)

where F± and Z± are given by following expressions (Λ is
the cutoff parameter):

F± = ±iΛ
√

2|C±|2, Z± =
Λ

κ
|C±|2 . (3.19)

Because Ψ̂± is a representation of the ψ̂±, we expect that
a bilinear combination in (3.18) produces Ĵ±, since it is
the same combination as in (2.11). So the natural choice
for the constants is

Z± = 1. (3.20)

From the last relation, we get the values of the constants
F± and C±,

C± =
√
κ

Λ
, F± = ±iκ

√
2 . (3.21)

With these values of the constants F± and C±, the oper-
ators Ψ̂±, Π̂± and ˆ̃J± take the form

Ψ̂± =
√
κ

Λ
: exp

(
∓ i
κ
√

2
Î±

)
: , (3.22)

Π̂± = i
√
κ

Λ
: exp

(
± i
κ
√

2
Î±

)
: , (3.23)

ˆ̃J±(σ, σ + η)|η→0 = ± iκ
√

2
η ± iε

+ Ĵ±(σ) . (3.24)

In order to compare these results with ones from [2],
we will derive the Lagrangian form of the operators Ψ̂±.
Note that up to this point in Sect. 3. we did not specify
the Hamiltonian of the theory. So our canonical expres-
sion is valid for any theory satisfying PB algebra (3.1)
and (3.2). Passing to the Lagrangian formulation we must
be more specific, and we chose the example of the Thirring
model, which we considered in the previous section. We
will express the momentum π in terms of the correspond-
ing velocity starting from the equation of motion for the
momentum, (2.38), and using the equation of motion for
the auxiliary field Aµ

π =
2
β2 ϕ̇ . (3.25)

Substituting the last equation in (3.13), after rescaling
ϕ →

√
2
β ϕ, we obtain the Lagrangian form of the fields Ψ±,

Ψ±(σ) = C± exp
{

− i
κβ

∫ σ

−∞
dσ̄ϕ̇(σ̄) ∓ iβ

2
ϕ(σ)

}
. (3.26)

After quantization, from the last relation we get

Ψ̂±(σ) = C± : exp
{

− i
κβ

∫ σ

−∞
dσ̄ ˆ̇ϕ(σ̄) ∓ iβ

2
ϕ̂(σ)

}
: .

(3.27)
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This form of the field operators is in agreement with the
one obtained in [2] from the requirement that the operators
Ψ̂± have to be annihilation operators for solitons in sine-
Gordon theory, as well as that they anticommute with
themselves. The result given by (3.22) is more general,
because it is in Hamiltonian form, so it can be applied to
the other two-dimensional models. Additionally, this result
is obtained from a smaller number of assumptions. Namely,
we obtained this result demanding that the fields Ψ± and
the currents J± have to obey a Poisson brackets algebra
which is isomorphic to the algebra of the operators ĵ± and
ψ̂±.

3.2 Anticommutation relations
for the operators Ψ̂± and Π̂±

In this subsection we will show that the operators Ψ̂± and
Π̂±, given by (3.22) and (3.23), obey the canonical anti-
commutation relations.

In order to justify the interpretation of the operators
Ψ̂± and Π̂± as the fermionic operators, we should show that
they obey canonical anticommutation relations. Firstly, we
will find anticommutation relations for the operators Ψ̂±.
Using (3.22) and (B.3), we find

Ψ̂±(σ)Ψ̂±(σ̄) =
κ

Λ
exp

{
− 1

2κ2

[
Î
(±)
± (σ), Î(∓)

± (σ̄)
]}

× : exp
{

∓ 1
2κ2

[
Î±(σ) + Î±(σ̄)

]}
: .(3.28)

With the help of (B.15), in the limit ε → 0, we find
that the anticommutator for the fields Ψ± vanishes:[

Ψ̂±(σ), Ψ̂±(σ̄)
]
+

= 0 . (3.29)

The calculation, which is very similar to the previous one,
shows that the anticommutator for the momenta also van-
ishes: [

Π̂±(σ), Π̂±(σ̄)
]
+

= 0 . (3.30)

Now we will find the anticommutator for the fields Ψ±
with their conjugate momenta Π±. Using (3.22), (3.23)
and (B.3), we obtain

Ψ̂±(σ)Π̂±(σ̄) = i
κ

Λ
exp

{
1

2κ2

[
Î
(±)
± (σ), Î(∓)

± (σ̄)
]}

× : exp
{

∓ i
κ
√

2

[
Î±(σ) − Î±(σ̄)

]}
: ,

and with the help of (B.14) we get

Ψ̂±(σ)Π̂±(σ̄) = i� δ(±)(σ − σ̄)

× : exp
{

∓ i
κ
√

2

[
Î±(σ) − Î±(σ̄)

]}
: ,

which produces the canonical anticommutation relations
for the operators Ψ̂± and Π̂±:[

Ψ̂±(σ), Π̂±(σ̄)
]
+

= i�δ(σ − σ̄) : exp
{

∓ i
κ
√

2

[
Î±(σ) − Î±(σ̄)

]}
:

= i�δ(σ − σ̄) . (3.31)

3.3 Bosonization of the scalar densities

Products of the fermionic field operators ˆ̄ΨΨ̂ and ˆ̄Ψγ5Ψ̂ we
will express in terms of the bosonic variables using (3.22).
Note that the relation

[
Î+, Î−

]
= 0 simplifies the calcula-

tions. With the help of (B.3), we obtain

Ψ̂∗
±Ψ̂∓ =

κ

Λ
: exp

[ ±i
κ
√

2
(Î+ + Î−)

]
: . (3.32)

Substituting (3.8) in the last equation, we find

Ψ̂∗
±Ψ̂∓ =

κ

Λ
: exp (±i

√
2ϕ) : . (3.33)

So, the bosonic representations for the scalar density ˆ̄ΨΨ̂
and the pseudoscalar density ˆ̄Ψγ5Ψ̂ are

ˆ̄ΨΨ̂ = Ψ̂∗
−Ψ̂+ + Ψ̂∗

+Ψ̂− =
�

πΛ
: cos (

√
2ϕ) : , (3.34)

ˆ̄Ψγ5Ψ̂ = −Ψ̂∗
−Ψ̂+ + Ψ̂∗

+Ψ̂− =
i�
πΛ

: sin (
√

2ϕ) : . (3.35)

These results are consistent with the ones obtained by
direct applying the method to the scalar densities.

4 Conclusion

In this paper we presented a complete and independent
derivation of the Thirring sine-Gordon relationship, using
the Hamiltonian methods. We also obtained the Hamilto-
nian and Lagrangian representation for the Mandelstam
fermionic operators.

We started with a canonical analysis of the theory where
fermions are coupled to the auxiliary external gauge field.
The massive Thirring model can easily be obtained from
this Lagrangian by adding the square of the auxiliary field
and eliminating it on invoking its equation of motion. We
found that there exists FCC j± in our theory, whose PB
are equal to zero. In the quantum theory, the central term
appears in the commutation relations of the operators ĵ±.
This changes the nature of the constraints because they
become SCC.

We define the new effective theory, postulating the PB
of the constraints and Hamiltonian density, following the
method developed in [10]. We require that the classical PB
algebra of the bosonic theory is isomorphic to the quan-
tum commutator algebra of the fermionic theory. Then



450 V. Juričić, B. Sazdović: Thirring sine-Gordon relationship by canonical methods

we found the representation for the currents and Hamilto-
nian density in terms of phase space coordinates. Finally,
we derived the effective action using the general canonical
formalism and obtained the equivalent bosonized model.
Together with the auxiliary field term this is just the sine-
Gordon action, up to the identifications of some parameters
in agreement with [1,2]. For the massless Thirring model it
is shown that its quantum effective action has one parame-
ter which does not exist in the classical one. We determined
the quantum action using formal invariance of the massless
Thirring model under the replacements given by (2.50) and
the already established Thirring sine-Gordon relationship.

The algebra of the currents J± is the basic PB al-
gebra. Knowing the representation of the currents J± in
terms of ϕ and π we can find the representation for all
other quantities from their PB algebra with the currents.
In Sect. 2. we found the bosonization rules for the chiral
densities. The main result of Sect. 3. is the bosonic rep-
resentation for the fermions, which has been obtained in
the same way. Beside the usual bosonization rules and the
usual Mandelstam fermionic representations, we also got
the Hamiltonian ones, expressing the currents J± in terms
of both the coordinate ϕ and momentum π. These rules are
more general, because they are valid for arbitrary Hamil-
tonian and they are a consequence of the commutation
relations. After elimination of the momenta on invoking
their equations of motion, we came back to the conven-
tional bosonization rules and to the conventional Mandel-
stam fermionic representations. The Schwinger term and
consequently the sine-Gordon action have the correct de-
pendence on Planck’s constant �, because κ is proportional
to �. The fact that � arises in the classical effective theory
and in the coupling constant relation shows the quantum
origin of the established equivalence.

A Normal ordering and central term

In this appendix we will derive commutation relations of
the current operators ĵ± ≡ −i

√
2 : π̂±ψ̂± :[

ĵ±(σ), ĵ±(σ̄)
]

= ±2i�κδ′(σ − σ̄),[
ĵ±(σ), ĵ∓(σ̄)

]
= 0 , (A.1)

where κ ≡ �

2π .
The current operators ĵ± we define using the normal

ordering prescription. In order to decompose these opera-
tors in positive and negative frequencies in position space,
let us introduce the two parts of the delta function

δ(±)(σ) =
∫ ∞

−∞

dk
2π

θ(∓k) eik(σ∓iε)

=
∓i

2π(σ ∓ iε)
(ε > 0) , (A.2)

where θ is the unit step function. They obviously obey the
relation δ(σ) = δ(+)(σ) + δ(−)(σ) and have the following

properties:

δ(+)(σ) = δ(−)(−σ) , (A.3)[
δ(+)(σ)

]2
−
[
δ(−)(σ)

]2
=

i
2π

δ′(σ) . (A.4)

Any operator Ô can also be decomposed in two parts

Ô(±)(τ, σ) =
∫ ∞

−∞
dσ̄ δ(±)(σ − σ̄) Ô(τ, σ̄) , (A.5)

so that Ô = Ô(+) + Ô(−). We promote the operators π̂(−)
+

and ψ̂(−)
+ to annihilation ones, and the operators π̂(+)

+ and
ψ̂

(+)
+ to creation ones,

π̂
(−)
+ | 0〉 = ψ̂

(−)
+ | 0〉 = 0 , 0| π̂(+)

+ = 〈0| ψ̂(+)
+ = 0 .

(A.6)
In order to preserve the symmetry under parity transfor-
mations, we define creation and annihilation operators for
π̂− and ψ̂− in an opposite way [operators with index (−)
are creation and ones with index (+) are annihilation op-
erators]. The normal order for a product of the operators
means that creation operators are placed to the left from
the annihilation ones.

From the basic commutation relations[
ψ̂±(σ), π̂±(σ̄)

]
= i� δ(σ − σ̄) , (A.7)

we have[
ψ̂

(±)
+ (σ), π̂(∓)

+ (σ̄)
]

= i� δ(±)(σ − σ̄) , (A.8)

[
ψ̂

(±)
− (σ), π̂(∓)

− (σ̄)
]

= i� δ(±)(σ − σ̄) , (A.9)

and the other commutation relations are trivial. Since the
Poisson brackets for the currents j± vanish, the only pos-
sible difference between the classical and quantum algebra
is the appearance of a central term at the quantum level.
Because of this, we find the form of the current algebra
taking the vacuum expectation value of the commutators,[

ĵ±(σ), ĵ±(σ̄)
]

= ∆±(σ, σ̄) −∆±(σ̄, σ) , (A.10)

where ∆±(σ, σ̄) ≡ 〈0| ĵ±(σ)ĵ±(σ̄)| 0〉.
Using the fact that the operators ĵ± are normal ordered,

the only non-trivial contributions have the form

∆±(σ, σ̄) = −2〈0| π̂(∓)
± (σ)ψ̂(∓)

± (σ)π̂(±)
± (σ̄)ψ̂(±)

± (σ̄)| 0〉

= −2�
2
[
δ(∓)(σ − σ̄)

]2
. (A.11)

With the help of the δ(±) function properties (A.4) we ob-
tain (A.1). The commutator for the currents with different
lower indices do not have a central term, and neither do
commutators of the currents with the operators t̂± and ρ̂±.
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B Regularization of the field products

In this appendix, we will show, using a regularization pro-
cedure, that the following relations hold:

√
2Ψ̂∗

±(σ)Ψ̂±(σ + η)|η→0 ≡ ˆ̃J±(σ, σ + η)|η→0 (B.1)

=
F±
η ± iε

+ Z±Ĵ± (ε > 0),

where F± and Z± are given by (Λ is the cutoff parameter)

F± = ±iΛ
√

2 |C±|2 , Z± =
Λ

κ
|C±|2 . (B.2)

Starting with the definition of the operator ˆ̃J± and using
the formula ((3.5) in [2])

: eÂ : : eB̂ = e[Â
(+)B̂(−)] : eÂ+B̂ : , (B.3)

([A(+), B(−)] is a c-number), we get

ˆ̃J±(σ, σ̄) =
√

2|C±|2 exp
{

1
2κ2 X±(σ, σ̄)

}
(B.4)

× : exp
{

± i
κ
√

2

[
Î±(σ) − Î±(σ̄)

]}
: ,

where
X±(σ, σ̄) ≡

[
Î
(±)
± (σ), Î(∓)

± (σ̄)
]
. (B.5)

We compute the commutators X± using the algebra of the
operators Î±

[
Î±(σ), Î±(σ̄)

]
=
∫ σ

−∞
dσ1

∫ σ̄

−∞
dσ2

[
Ĵ±(σ1), Ĵ±(σ2)

]
.

(B.6)
The last relation can be rewritten in the form

[
Î±(σ), Î±(σ̄)

]
= ±i�κ

∫ σ

−∞
dσ1

∫ σ̄

−∞
dσ2 (B.7)

× [∂σ1δ(σ1 − σ2) − ∂σ2δ(σ1 − σ2)] ,

which is obtained from the algebra of the currents Ĵ±.
Performing the integration we get[

Î±(σ), Î±(σ̄)
]

= ∓i�κε(σ − σ̄) , (B.8)

where ε(σ) = θ(σ) − θ(−σ) is the sign function. From the
expression [

Î
(±)
± , Î±

]
=
[
Î
(±)
± , Î

(∓)
±
]

(B.9)

it follows that

X±(σ, σ̄) ≡
[
Î
(±)
± (σ), Î(∓)

± (σ̄)
]

(B.10)

= ∓i�κ
∫ ∞

−∞
dσ1 δ

(±)(σ − σ1) ε(σ1 − σ̄).

Using (A.2), the last relation gets the form

X± = ∓i�κ
∫ ∞

−∞
dσ1

∓i
2π(σ − σ1 ∓ iε)

ε(σ1 − σ̄) . (B.11)

After regularization (Λ is the cutoff parameter) the integral
on the right hand side takes the form

X± = −κ2

{∫ Λ

σ̄

dσ1
1

σ − σ1 ∓ iε
−
∫ σ̄

−Λ
dσ1

1
σ − σ1 ∓ iε

}
.

(B.12)
Computing the integral and taking Λ � σ, we get

X± = κ2
{

ln
[

Λ2

(σ̄ − σ ± iε)2

]
± iπ

}
. (B.13)

The last equation implies

e
1

2κ2X±(σ, σ̄) =
∓iΛ

σ − σ̄ ∓ iε
= 2πΛδ(±)(σ − σ̄), (B.14)

e− 1
2κ2X±(σ, σ̄) = ±i

σ − σ̄ ∓ iε
Λ

. (B.15)

Substituting (B.14) in (B.4), we get the regularized form

of the operator ˆ̃J±

ˆ̃J±(σ, σ̄) =
√

2|C±|2 ∓iΛ
σ − σ̄ ∓ iε

(B.16)

× : exp
{

± i
κ
√

2

[
Î±(σ) − Î±(σ̄)

]}
:

(ε > 0).

For the infinitesimal η = σ̄ − σ we get

ˆ̃J±(σ, σ + η)|η→0 =
√

2 |C±|2 ±iΛ
η ± iε

+
|C±|2 Λ

κ
Ĵ±

(ε > 0) , (B.17)

which is exactly the relation (B.1), and F± and C± are
given by (B.2).
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